

Probabilistic Quantitative Precipitation Estimation with Radars

Pierre Kirstetter

with contributions of: Micheal Simpson, Jian Zhang, Jonathan J. Gourley, Steven Martinaitis and Nathaniel Indik

Challenges in remote sensing hydrometeorology

Example: deterministic QPE ... but indirect and often underdetermined relationship between observations and precipitation

meteor Distributions with Equivalent Reflectivity but Different Rainfall Rates

Cold Rain Process

Narm Rain Process

rainfall rate

Challenges in remote sensing hydrometeorology

- Remote sensing, atmospheric sciences, and hydrology:
 - precipitation variability is ignored;
 - partially resolved / mixtures of precipitation processes;
 - limited characterization of extremes;
 - impacts hazard applications.
- Classical parameterization approach is insufficient: deterministic, based on averaged properties.

Moving forward: increase the information content

Use uncertainty as an integral part of precipitation estimation

→ data fusion

data assimilation

Quantify the likelihood of weather and water extremes

hazard information

→ risk analysis

Space outside the deterministic relation = space of error

Probabilistic relation = possible precipitation rates

Estimating distributions of possible precipitation rates

Same reflectivity

2 different rain rates

$$Z_{\infty} = \int_{0}^{\infty} D^{6} N(D) dD$$
$$R_{\infty} = \frac{\pi}{6} \int_{0}^{\infty} w_{t} D^{3} N(D) dD$$

Hydrometeor Distributions with Equivalent Reflectivity but Different Rainfall Rates

valiofall rate

Distribution of precipitation rates: Snow

Deterministic Z-S relations: compilation Snow PQPE

Source	for dry snow
Gunn and Marshall (1958)	$Z = 448S^2$
Sekhon and Srivastava (1970)	$Z = 399S^{2.21}$
Ohtake and Henmi (1970)	$Z = 739S^{1.7}$
Puhakka (1975)	$Z = 235S^{2}$
Koistinen et al. (2003)	$Z = 400S^2$
Huang et al. (2010)	$Z = (106-305)S^{(1.11-1.92)}$
Szyrmer and Zawadzki (2010)	$Z = 494S^{1.44}$
Wolfe and Snider (2012)	$Z = 110S^{2}$
WSR-88D, Northeast	$Z = 120S^{2}$
WSR-88D, north plains-upper Midwest	$Z = 180S^2$
WSR-88D, high plains	$Z = 130S^2$
WSR-88D, Intermountain West	$Z = 40S^{2}$
WSR-88D, Sierra Nevada	$Z = 222S^{2}$

Courtesy Bukovčić et al. (2018)

Enhance QPE information content

• Provide the PDF of precipitation rates at radar measurement scale

Most likely value – mitigate bias

- Provide the PDF of precipitation rates at radar measurement scale
- Depict the most likely value (deterministic users & applications)

Uncertainty

- Provide the PDF of precipitation rates at radar measurement scale
- Depict the most likely value (deterministic users & applications)
- Quantify certainty bounds (data fusion & assimilation)

Monitoring the likelihood of extremes - hazards

- Provide the PDF of precipitation rates at radar measurement scale
- Depict the most likely value (deterministic users & applications)
- Quantify certainty bounds (data fusion & assimilation)
- Quantify the likelihood of extreme cases (risk analysis) Kirstetter, P.E., et al., 2015: Probabilistic Precipitation Rate Estimates with Ground-based Radar Networks. Water Resources Research, 51, 1422–1442. doi:10.1002/2014WR015672

PQPE implementation in MRMS v11

Goal: implement PQPE in the MRMS system testbed **Time period:** 2017 **Temporal resolution:** 2-min

PQPE products:

- Expectation
- Uncertainty
- Probability of exceeding thresholds

Computational efficiency:

• 2 mins to process a full day (using parallel computation)

\rightarrow suitable for operational implementation in MRMS.

PQPE expectation

Uncertainty estimates

Applications: data fusion & assimilation

Probability of exceeding threshold (10 mm/h)

• Applications: risk analysis

Probability of exceeding threshold (25 mm/h)

• Applications: risk analysis

Hydrometeorology Testbed MRMS Hydro Experiment

- NSSL scientists and NWS forecasters collaborated on testing emerging hydrometeorological products for NWS operations.
- web interface with various PQPE product available: expected values, uncertainty products, exceedance probabilities
- June 24 July 19, 2019

https://blog.nssl.noaa.gov/flash/hwt-hydro/6

HMT-Hydro experiment: forecasters feedback

- Forecasters found utility in the expected PQPE product and the probability of exceeding rainfall rate thresholds
- Uncertainty was not scored as favorably
 - Context of the experiment favors information directly relevant to hazards
 - Suggestions were made to better convey uncertainty
 - "very useful in a facets/PHI framework [...] input into flash flood models"
- Suggestion: "0.5, 1, 3, 6 hour accumulated PQPE would be extremely helpful"

Perspectives: space-based geostationary sensors – Shruti Upadhyaya

NOAA's GOES16 provides high-resolution passive observations of severe weather clouds and precipitation

Hurricane Matthew at 09:15 UTC on 08 October 2016 in North Carolina

Probabilistic QPE: perspectives

Probabilistic Quantitative Precipitation Estimates:

- ➔ Ground-based radars
- ➔ Space-based radars

→ IR-based (satellite) component of GPM

Other applications/developments:

➔ GOES16

- → snow water equivalent
- ➔ flash flood risk monitoring

Communicating probabilistic information is still an outstanding challenge.

This work was made possible through support by NOAA **JTTI** and **GOESR3** programs