Probabilistic Quantitative Precipitation Estimation with Radars

Pierre Kirstetter

with contributions of:
Micheal Simpson, Jian Zhang, Jonathan J. Gourley, Steven Martinaitis and Nathaniel Indik

Remote sensing \&

Quantitative Precipitation Estimation

Challenges in remote sensing hydrometeorology Example: deterministic QPE ... but indirect and often underdetermined

Challenges in remote sensing hydrometeorology

- Remote sensing, atmospheric sciences, and hydrology:
- precipitation variability is ignored;
- partially resolved / mixtures of precipitation processes;
- limited characterization of extremes;
- impacts hazard applications.
- Classical parameterization approach is insufficient: deterministic, based on averaged properties.

Moving forward: increase the information content

\rightarrow Use uncertainty as an integral part of precipitation estimation
\rightarrow data fusion
\rightarrow data assimilation
\rightarrow Quantify the likelihood of weather and water extremes
\rightarrow hazard information
\rightarrow risk analysis

Space outside the deterministic relation = space of error

Probabilistic relation = possible precipitation rates

Estimating distributions of possible precipitation rates

Same reflectivity
2 different rain rates $R_{\infty}=\frac{\pi}{6} \int_{0}^{\infty} w_{t} D^{3} N(D) d D$

Distribution of precipitation rates: Snow

Deterministic Z-S relations: compilation
Snow PQPE

Source	$Z(S)$ relation for dry snow
Gunn and Marshall (1958)	$Z=448 S^{2}$
Sekhon and Srivastava (1970)	$Z=399 S^{2.21}$
Ohtake and Henmi (1970)	$Z=739 S^{1.7}$
Puhakka (1975)	$Z=235 S^{2}$
Koistinen et al. (2003)	$Z=400 S^{2}$
Huang et al. (2010)	$Z=(106-305) S^{(1.11-1.92)}$
Szyrmer and Zawadzki (2010)	$Z=494 S^{1.44}$
Wolfe and Snider (2012)	$Z=110 S^{2}$
WSR-88D, Northeast	$Z=120 S^{2}$
WSR-88D, north plains-upper Midwest	$Z=180 S^{2}$
WSR-88D, high plains	$Z=130 S^{2}$
WSR-88D, Intermountain West	$Z=40 S^{2}$
WSR-88D, Sierra Nevada	$Z=222 S^{2}$

Enhance QPE information content

- Provide the PDF of precipitation rates at radar measurement scale

Most likely value - mitigate bias

- Provide the PDF of precipitation rates at radar measurement scale
- Depict the most likely value (deterministic users \& applications)

Uncertainty

- Provide the PDF of precipitation rates at radar measurement scale
- Depict the most likely value (deterministic users \& applications)
- Quantify certainty bounds (data fusion \& assimilation)

Monitoring the likelihood of extremes - hazards

Rainfall rate (mm/h)

- Provide the PDF of precipitation rates at radar measurement scale
- Depict the most likely value (deterministic users \& applications)
- Quantify certainty bounds (data fusion \& assimilation)
- Quantify the likelihood of extreme cases (risk analysis)

Kirstetter, P.E., et al. , 2015: Probabilistic Precipitation Rate Estimates with Ground-based Radar Networks.
Water Resources Research, 51, 1422-1442. doi:10.1002/2014WR015672

PQPE implementation in MRMS v11

Goal: implement PQPE in the MRMS system testbed Time period: 2017
Temporal resolution: 2-min

PQPE products:

- Expectation
- Uncertainty
- Probability of exceeding thresholds

Computational efficiency:

- 2 mins to process a full day (using parallel computation)
\rightarrow suitable for operational implementation in MRMS.

PQPE expectation

Uncertainty estimates

- Applications: data fusion \& assimilation

Probability of exceeding threshold ($10 \mathrm{~mm} / \mathrm{h}$)

- Applications: risk analysis

Probability of exceeding threshold ($25 \mathrm{~mm} / \mathrm{h}$)

- Applications: risk analysis

Hydrometeorology Testbed MRMS Hydro Experiment

- NSSL scientists and NWS forecasters collaborated on testing emerging hydrometeorological products for NWS operations.
- web interface with various PQPE product available: expected values, uncertainty products, exceedance probabilities
- June 24 - July 19, 2019

HMT-Hydro experiment: forecasters feedback

- Forecasters found utility in the expected PQPE product and the probability of exceeding rainfall rate thresholds
- Uncertainty was not scored as favorably
- Context of the experiment favors information directly relevant to hazards
- Suggestions were made to better convey uncertainty
- "very useful in a facets/PHI framework [...] input into flash flood models"
- Suggestion: "0.5, 1, 3, 6 hour accumulated PQPE would be extremely helpful"

Perspectives: space-based geostationary sensors Shruti Upadhyaya

NOAA's GOES16 provides high-resolution passive observations of severe weather clouds and precipitation

Perspectives: spaceborne radars DPR PQPE = f (reflectivity, microphysics, precipitation type,

Probabilistic QPE: perspectives

Probabilistic Quantitative Precipitation Estimates:

\Rightarrow Ground-based radars
\rightarrow Space-based radars
\Rightarrow IR-based (satellite) component of GPM
Other applications/developments:
\rightarrow GOES16
\rightarrow snow water equivalent
\Rightarrow flash flood risk monitoring
Communicating probabilistic information is still an outstanding challenge.

This work was made possible through support by NOAA JTTI and GOESR3 programs

